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microscope resolving power [1/fm]

Jets are ideal hard probes into the QGP at sPHENIX
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Jet quenching at RHIC

LL\‘ (quenched) jet

Jet quenching
(Bjorken, 1982)
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Jet quenching and Parton-Medium interaction

Radiative energy loss

Initial-State

* Radiative energy loss was believed, for
a long time, to be the dominant parton F3éeves
energy loss mechanism in medium.

« Another mechanism, collisional
energy loss is being studied as the
other main contributor.

» Theoretical models are available to
quantitatively describe each
mechanism. (Coleman-Smith at el,
Liao&Shuryak, Vitev at el. etc.)




Jets and Parton-Medium interaction

 LHC has shown results of
Di-jet asymmetry and
inclusive jet profile
measurements to test
models.

 Jets are perfect
observables to model the
coupling of the medium
and its origin.
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ATLAS central Pb+Pb data
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Heavy quark jets and collisional energy loss

» Heavy quarks are most sensitive to
collisional energy loss due to their
suppressed radiative energy loss.

 Measurements have been made at
RHIC of semi-leptonic decay from D
and B mesons.

* Fully reconstructed heavy-flavor
tagged jets with various range of
energy and radius are crucial to
further disentangle parton-medium
interaction mechanisms.




B - Jets @ sPHENIX

- New probe at RHIC
- Radiative vs. collisional energy loss

- Extend models to lower py
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SPHENIX detectors

* Full and uniform acceptance with
O<¢<2mmand-1<n<1

Quter HCal

Superconducting coil
Inner HCal
EMCal

e Quter/Inner Hadronic CALorimeter

Vertexer/Tracker

* Superconducting solenoid (from BaBar)
2.8 mradius, 3.8 mlong, 1.5 T

* Compact Electro-Magnetic Calorimeter

* VVertexer/Tracker

* Requirements for b-jet reconstruction :
DCA < 100um, electron ID.




Calorimeters reference design

e Quter/Inner Hadronic CALorimeter

OUTER HCAL
- Steel and scintillating tiles + wavelength shifting fiber
-ANXxAp~0.1x0.1
- 0t/ E < 100/120/150% / \E (single particle, jet in pp, jet in AuAu)
INNER HCAL
- Readout: silicon PMTs, work in magnetic field 7‘&
| EMCAL |
« Compact Electro-Magnetic Calorimeter t —
- Tungsten + Scintillating fiber Outer HCAL ‘;3 5\
~3.0\,
- Anx Ad ~0.025 X0.025 Magnet =1.4X,
Inner HCAL =1\,
- O0c/ E <15% / VE (single particle, photon) EMCAL ~1 8X0z17\|

~5.5Ah— 95% E containment



“PHIENX  Preview of Test Beam Results

Final calibrations ongoing!
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Tracking detectors reference design

* Current default configuration :
MAPS (vertexer) and TPC (tracker)

Intermediate tracker under consideration.

» Monolithic Active pixel sensor (MAPS):
Imported from ALICE ITS

3 layers very close to IP (2.3, 3.2, 3.9 cm)

» Time Projection Chamber (TPC) :

Compact TPC with GEM readout. ~60 layers. k
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ITS upgrades to MAPS at CERN ALICE

» Aimed at heavy flavor measurements,
therefore excellent impact parameter
resolution and momentum resolution
required.

* Replace current 3-types (pixel, drift and
strip) tracking detectors with pixels only.
Size 30um x 30um. Spatial resolution
~dum.

o
Beam pipe ‘x‘;&x&

X
» Get closer to IP with 7 layer configuration. e

Reduced silicon material budget for inner

layers (350um -> 50um, 0.3% Xo per layer) 22mm ~ 400mm
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Monolithic Active Pixels Sensors (MAPS)

* 0.18um CMOS technology of TowerJazz

* high noise immunity

* high density/low power consumption

(35 mW/cm?)

 Radiation hardness

« ~2.7 Mrad (~1.7x10"% 1MeV n /cm?)

* High-speed (>100kHz) readout

 binary hit info without PID (dE/dx)
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Operation principles of MAPS sensors
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Chip floorpan

15 mm

A

<€

30 mm

Wire bonding pads
Analog DACs

Pad Ring and Custom Functional Blocks

1.208 mm
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Chip Read-out

32 readout regions
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Electrical property tests

* probe card firmware has needle contact-test logic implemented.

* In full contact, LEDs light up.

1. write PWR contact

3. write SIG contact

5. write regulator voltage
7. write SHORT combination
9. write bidirectional DIR
11. write readback register
13. read contact status

0. quit

enter commands : 4

DATA = F

CTRL =

HSDATA
DCLK =
DCTRL
MCLK = 3
DACMONV
DACMONI

1
1

e
ANO®O AN

read PWR contact

. read SIG contact

. read regulator current
. write operation mode

. write LEDs

. read readback register
. read clock lock status
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[ykwon@Simulation3 pALPIDEfs-softwarel$ [TConfig.cppl SetDeviceType() Set-up Type : @ with 1 chips and 1

FIFO

PALPIDE Test program
Git commit: TestBeamStable_2015-08-06-68-956d2860-dirty

[main.cpp] InitSetup(), Searching for DAQ boards
[TTestSetup::IsDAQBoard] Serial number = @

[TTestSetup: :AddDAQBoard] DAQ board type = 2

[USB.cpp] ConnectUSBDevice(), USB connection established.
Warning, using DAQBoard2 with ALPIDE-3 firmware
[TTestSetup: :AddDAQBoard], created DAQ board:
[TTestSetup: :AddDAQBoard], Geographical address: @
[TTestSetup: :AddDAQBoard], Firmware version: 247dfal5
[main.cpplInitSetup(), found 1 DAQ boards
[TTestSetup::AddDUTs] DUT for chip type 3 added.

[TTestsetup::GetSetupSummary] Created Setup with 1 DAQ Board(s):

[ PowerOn] Reading all ADCs:

[ ReadAl1ADCs] Read ADC: NTC = 92.989 deg C

[ ReadAl1ADCs] Read ADC: I(1.8 V Digital) = 0.161133 mA

[ ReadAl1ADCs] Read ADC: I(1.8 V Output) = 0.241699 mA

[ ReadAl11ADCs] Read ADC: I(1.8 V Analog) = 0.241699 mA

[ etCMUErrorCounts] Reading register to get CMU Error counts

[ eadRegister] Reading chip 16, register @x60e

[ eadRegister] Value read = 0x0

[ eadRegister] Warning, received chip ID @ instead of 16

[ rintCMUErrors] No CMU errors found. O t' H b d
[ ] ' 'I

[TTestSetup: p] Reading ADCs after chip initialization: pera Ion In ypaSS 0 e'

[TD ead ADC: NTC = 94,0933 deg C

[TD ReadAl1ADCs] Read ADC: I(1.8 V Digital) = 0.161133 mA

[ ReadAl11ADCs] Read ADC: I(1.8 V Output) = 0.241699 mA

[ ReadAll1ADCs] Read ADC: I(1.8 V Analog) = 0.161133 mA

[TpAlpidefs2::ReadRegister] Reading chip 10, register @x60c :2()




Other test functions

< On-chip DAC test (on right)

o Digital/Analog scan (on left)

# of hits
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Other test functions

o Threshold scan (on

o Noise scan

(on left)
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Track/Vertex reconstruction

* Current standard procedure for MAPS
- Pattern recognition (Hough transformation)

- Vertex finding

- Track finding (Segment method)

- Track fitting (Kalman filter)

- Vertex fitting

ll—- _

Collect tracks

__II

Creat tracklets

Hough transtormation

E-
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Track/Vertex reconstruction

» Standard procedure for MAPS

- Pattern recognition (Hough transformation)

- Vertex f|nd|ng a) Normal least square fitting
- Track finding (Cellular automation)

- Track fitting (Kalman filter)

- Vertex fitting IP

Momentum at IP

Only one track parameter can
be defined

b) Kalman fitting

IP
Momentum at IP

Track parameters are defined
par hit
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Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high

purity.
(Impact parameter based method)

* Known methods are :

- Track counting method track
- Jet probability method

- Secondary vertex method

25



Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high

purity.
(Impact parameter based method)

« Known methods are :
CMS 2011, \'s =7 TeV

* Data

- Track counting method £ b irom giuon spiting

[ c quark
I uds quark or gluon

- Jet probability method

- Secondary vertex method

-30 20 -10 0 10 20 30
3D IP significance



Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high
purity.

:

( N=2 differential discriminator )
* Known methods are :

CMS 2011, Vs =7 TeV

(v ]
. d a e Data
- Track counting method Sl ¢ R —"
- c quark
L g 104 = u:s quark or gluon
- Jet probability method
10°

- Secondary vertex method

5

3 . t
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Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high

purity.
* Known methods are :
- Track counting method
- Jet probability method

- Secondary vertex method

cl PDIODall V C OU

(Impact parameter based, inclusive discriminator)

lllllllllllllllllllllllll]lllllllllllll
-1 -08 -06 -04-02 -0 02 04 06 08 1
signed track probability
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Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high
purity.

(Impact parameter based, inclusive discriminator)

* Known methods are :

CMS 2011, Vs =7 TeV

n
i = ® -
- Track counting method o1 B bauerk g
N [ c quark
"q',' 10* B uds quark or gluon
-

- Jet probability method -

- Secondary vertex method 10°
10
O 1.5
1eneees T 4 - In Pjet
E 0.5t RN t*é*éh”
o o 0.5 1 1.5 2 25

JP discriminator



Methods for B-Jet tagging

* The success of B-jet tagging highly depends on well-reconstructed tracks of high
purity.

* Known methods are :

CMS 2011, Vs =7 TeV
N
- Track counting method D 20001 — 3 T—
O - = c:uark . |
» uds quark or gluon
- Jet probability method §‘5°°;
;1000'
- Secondary vertex method @ ol
0:
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Future Works

Import/assemble MAPS inner layers from CERN.

Develop data acquisition scheme to be integrate into sSPHENIX DAQ.
Evaluate tracking performance with final tracking detector configuration.
Establish b-tagging methods for sPHENIX.

And a lot more work to do...
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Thank yout!



